

 NO. WP-GRLC-2012-01 | JULY 2, 2012

TDGen: A Test Data

Generator for Evaluating

Record Linkage Methods

Tobias Bachteler | Jörg Reiher

TDGen: A Test Data Generator for Evaluating Record
Linkage Methods

Tobias Bachteler and Jörg Reiher

German Record Linkage Center
University of Duisburg-Essen, D-47057 Duisburg, Germany
recordlinkage@iab.de, http://www.record-linkage.de

July 2, 2012

1 Introduction

The record linkage field is notoriously short of appropriate test data for methodological research
on linkage algorithms and procedures. Since there are few real world data sets publicly available,
research on record linkage methodology must often be based on artificially generated test decks.
At present, most studies are based on the data set generator implemented as part of the Febrl
data linkage system [1], [2]. The Febrl data set generator constitutes an outstanding contribution
to record linkage research because it provided the community with a tool for generating artificial
test data far more complex and elaborated than previous simulators as DBGen1.
However, in the course of our research on record linkage methods we realized our need for
some additional features and modifications of the Febrl generator. Particularly, we wanted the
generator to be able to take an arbitrary test file and generate a second, garbeld version of it
and to allow more flexible control of the error insertion probabilities. Since the Febrl generator
is available under an open software license, we initially thought about modifying it. However,
since this meant to set up an essentially new structure and logic, we decided to design and built
a completely new test data set generator.
Our record linkage test data generator, TDGen for short, is designed to take a test data file
and to provide a garbled version of it by introducing simulated errors. We provide TDGen as an
extension to the information miner KNIME [4].
We drew heavily on the excellent work of Peter Christen and his colleagues [1], [2] regarding
the error types TDGen provides. Specifically, we adopted most of its generic error types, the
concept of files containing misspelled variants of strings, the way OCR-type errors are introduced,
the idea of introducing phonetic errors by reverse-modelling their encoding rules, and the way
typographical errors are inserted from the Febrl data simulator.

2 The principles of the test data generator

We designed TDGen according to a three basic principles. First, TDGen should allow the user
to put in a test data file containing typical record linkage identifiers and to generate a second,
garbled version of this file by introducing simulated errors. Second, TDGen should allow the user
to specify as flexibly as possible the degree and type of error introduced. Third, users should be
1 The first version of DBGen was provided by Mauricio Hernandez and used in [3]. Its source code can be
obtained via the RIDDLE Repository (http://www.cs.utexas.edu/users/ml/riddle/index.html).
Amit Chandel and Mohammad Sadoghi (University of Toronto) provided an update which can be
downloaded at http://queens.db.toronto.edu/~mo/spider/index.php#data.

2

able to adapt, modify and extend TDGen requiring a minimum of programming skills.

We provide TDGen as a KNIME extension along with a readily working build-up within KNIME,
a so called KNIME workflow. This workflow produces from an input file a garbled version as an
output file. This report describes the installation and usage of this basic TDGen workflow. We
assume that the user at first will adapt this workflow by configuring the basic workflow according
to his needs and by adding some generic KNIME nodes. Later on, the user can assemble his own
TDGen workflow from the nodes delivered with our KNIME extension and program his own
TDGen nodes as well.

TDGen allows to configure the error-generating process for rows, columns and cells separately.
First, the user defines the fraction of erroneous rows, then the number of erroneous columns in
those rows and finally the number of errors in the concerned cells.

The basis of the cell error assignment is concept of the error scores. For each data cell an error
score limit is defined during the configuration process. If a certain error type is realized within
a data cell, its associated error type score will be added to the data cell’s error score. As long as
the error score limit is not reached, additional errors can be realized in a data cell. On the other
hand, if the error score limit is reached or exceeded, no further errors can be realized. Since the
user can set the error type score of each error type, he has good control over the error formation
process in the data cells.

3 Installation

3.1 32 bit Windows

1. Download the self-extracting archive from “http://knime.org/downloads/knime/win32exe”.
2. Extract to “C:/Program Files”. This will create “C:/Program Files/knime_2.5.X”.
3. Unzip the archive “simulator_data.zip” to “C:/”. This will create “C:/simulator_data”.
4. Copy all .jar files in “C:/simulator_data” to “C:/Program Files/knime_2.5.X/dropins”.
5. Start “cmd.exe”, move to “C:/Program Files/knime_2.5.X”, and execute the command

“knime -clean”.
6. In the window “Workspace launcher”, click on “ok”.
7. Click on “Open KNIME workbench”.
8. Choose “Import KNIME workflow ...” from the menu “File”.
9. Select “Select archive file” in the panel “Source:”.
10. Via the Browse-button choose “tdgen-basic-workflow.zip” from the folder “C:/simulator_data”.
11. Open the TDGen-workflow by a double-click on “tdgen-basic” within the tab “Workflow

Projects”.

Note that from now on KNIME can be started regularly.

3.2 32 bit Linux

1. Download the self-extracting archive from “http://knime.org/downloads/knime/linux32”.
2. Extract to your home directory “/home/<username>”. This will create

“/home/<username>/knime_2.5.X”.
3. Unzip the archive “simulator_data.zip” to “/home/<username>”. This will create

“/home/<username>/simulator_data”.

3

4. Copy all *.jar files in “/home/<username>/simulator_data” to
“/home/<username>/knime_2.5.X/dropins”.

5. Start the console, move to “/home/<username>/knime_2.5.X”, and execute the command
“./knime -clean”.

6. In the window “Workspace launcher”, click on “ok”.
7. Click on “Open KNIME workbench”.
8. Choose “Import KNIME workflow ...” from the menu “File”.
9. Select “Select archive file” in the panel “Source:”.
10. Via the Browse-button choose “tdgen-basic-workflow.zip” from the folder

“/home/<username>/simulator_data”.
11. Open the TDGen-workflow by a double-click on “tdgen-basic” within the tab “Workflow

Projects”.

Note that from now on KNIME can be started regularly.

4 Description and usage of the test data generator

After the successful import of the basic TDGen workflow, KNIME’s GUI should look as this:

In the Node Repository there is now an additional entry “German Record Linkage Center”. There
you find all of TDGen’s nodes along with a detailed description.

4

4.1 File reading

The input data file is feed in the workflow via the node “File reader”. The user can configure
KNIME nodes by right-clicking on the node and choosing “Configure...”. The node “File reader”
is a generic KNIME node. Please consult its node description for help.

In our basic workflow we read the file “C:/simulator_data/sample_data_500.csv”, a tab-separated,
utf-8 coded data file containing person data with typical record linkage identifiers. Please make
sure to choose utf-8 in the tab “Character decoding” after a click on the button “Advanced...”.
There is also a second sample input data file “sample_data_10000.csv”. Please change the “File
reader” node to put in this larger sample file.
Note that TDGen expects string attributes, so be sure to configure the node accordingly when
reading your own data.

4.2 Configurating the error generation process

The error generation is configurated by the two nodes “Configure Row Errors” and “Configure
Column Errors”.
When opened, the configuration dialogue of the nodes “Configure Row Errors” looks as this:

Specifying the fraction of erroneous rows The input in the field “Row error probability”
specifies the probability of each row containing at least one error.

Specifying the number of erroneous columns The distribution of erroneous columns deter-
mines how many columns will be error-prone in each erroneous row. There are three alternatives:

5

1. Hurdle Poisson
If you choose the option “Hurdle Poisson”, you have to specify the Poisson mean via the box
“Lambda”. Then, the number of columns containing errors will be sampled from the specified
Poisson distribution with the row error probability as hurdle (i. e. as the proportion of zeros)
[5].

2. Hurdle Uniform
If you choose the option “Hurdle Uniform”, each erroneous row will have the same number
of error columns. You have to specify this number in the field “Error columns per row”.

3. Hurdle Manual
The option “Hurdle Manual” lets you manually enter the relative frequencies of one, two or
more error columns per row. Please consider the node description for syntax details.

When opened, the configuration dialogue of the nodes “Configure Column Errors” looks as this:

Selecting attributes On the left is the list of the attributes from the input file. The check box
selects an attribute for error insertion.

Specifying the relative error frequency for the attributes As a result of the “Row error
configuration” process, for each row the number of erroneous columns is defined, but not yet
which columns shall be chosen for this. By the ”Error frequency” fields you can specify the
chance that the respective column is being selected. Of course, once an attribute is chosen to be
erroneous in the concerned row, it is removed from the select list for that row.

Selecting an error score limit distribution The number of errors within a cell is speci-
fied via the drop-down menu “Error distribution”. There are three alternative error score limit
distributions to choose from, Hurdle Uniform, Poisson, and Hurdle Poisson.

6

1. Hurdle Uniform
The option Hurdle Uniform means, that errors will be inserted into a certain fraction of the
data cells (defined via the box “Error probability”) only and there will be the same error
score limit for each cell selected for error insertion (defined via the box “Global Score”).

2. Poisson
If you choose the option “Poisson”, you have to specify the Poisson mean via the box
“Lambda”. Then, the error score limit for each cell will be sampled from the specified Poisson
distribution.

3. Hurdle Poisson
As compared to the “Poisson” option you can additionally specify the proportion of cells
containing errors via the box “Error probability”. The Poisson sampling will only be applied
within the cells selected for error insertion.

Selecting the error types In the box “Errors” you specify the error types that might be
realized within the data cells of the attribute. The error types are selected by their error type
shortcuts. The relative probabilities of the error types are defined by the relative magnitude of
the associated numbers.

For example, consider the following showcase entries into the “Errors” box:

Example A: abb=0.5,dtd=0.5,pho=1.0,typ=1.0,ocr=1.0
Example B: pho=40,typ=40,ocr=40

The probability of an individual error type equals its number divided by the sum of the all
numbers. In example A, the probability of an abbreviation error (shortcut abb) would be 0.5/4
= 1/8. In example B, the probability of a typographical error (shortcut typo) would be 40/120
= 1/3.

The error type shortcuts can be learned from the lists in the Appendix or the node descriptions
of the error types in TDGen.

4.3 Error generation

In the error generation process, each error type is represented by an individual node. For each
data cell the realization of an error type is determined according to the simulation flow configu-
ration.

We distinguish three broad classes of error types: Generic errors are readily applicable to an
attribute without requiring additional files. File based errors require specialised substitution lists
or other additional files. Pattern bound errors expect the attribute coming with a certain pattern
(for example a 5 digit number). The error types are listed in the Appendix of this report. Detailed
descriptions and explanations of the individual error types can also be found in the respective
node descriptions in TDGen.

In the basic TDGen workflow, the individual error nodes are grouped in KNIME meta nodes.
The content of a meta node can be viewed by a double click on the meta node.

7

4.4 Simulation flow control

The simulation flow control is comprised of three nodes. The “Check Error Loop Termination”
node calculates the number of rows that need further error processing and passes the result to
the “Terminate Error Loop” node. Based on the passed result the “Terminate Error Loop” node
decides whether the error generation should be continued or be terminated: If the number of
rows that need further error processing is larger than zero, the loop is executed again. Otherwise
the generated data table including internal meta data columns for the error generation process is
passed to the “Cleanup Error Meta Data” node. The node “Cleanup Error Meta Data” removes
the internal meta data columns from the “Terminate Error Loop” output table.
The “Check Error Loop Termination” node can be configured to enforce a termination of the
error generation loop after a given number of loops. If this maximum number of loops is reached,
then the node will force the “Terminate Error Loop” to stop the error generation process by
passing zero as the number of remaining error rows to the termination node, even if there are
still rows left that need error processing. This leads to a termination of the process even if for
some rows the error score limit cannot be reached. For example because the error types set for a
column aren’t applicable for a particular cell. The default maximum value of 20 loops should be
sufficient for any realistic error generation scenario and should only be changed if the number of
errors for a single cell can exceed 20.

4.5 File writing

The garbled version of the input file is written by the generic KNIME node “csv writer”. Please
consider its node description to learn about its usage.

4.6 Starting the data generation process

Before starting a TDGen run, you should reset the whole workflow by choosing “Select all” from
the “Edit” menu (or Cntrl+A) and then choosing “Reset” from the ”Node” menu (or F8) to grasp
any changes in the workflow.

To start the data generation process do a right click on the “csv writer” node in the “file writing”
area and choose “Execute”.

5 Adapting and modifying TDGen

You can adapt the basic TDGen workflow by supplying your own input file, by configurating
the error process according to your needs and by supplying your own additional files to the file
based error types. For example, if you want to adapt the typo node to a non German keyboard,
you can supply a modified “typo_example.csv”.

Modifying the basic TDGen workflow is easy using KNIME’s node repository. For example, the
“Database Manipulation” nodes allow you to sample, filter or split your input file according to
your individual needs.

References

1. Peter Christen. Probabilistic data generation for deduplication and data linkage. In: Marcus Gal-
lagher, James M. Hogan, and Frederic Maire (eds.) Proceedings of the 6th International Conference on

8

Intelligent Data Engineering and Automated Learning: 6–8 July 2005; Brisbane, pp. 109–116, Berlin:
Springer 2005.

2. Peter Christen and Angus Pudjijono. Accurate synthetic generation of realistic personal information.
In: Thanaruk Theeramunkong, Boonserm Kijsirikul, Nick Cercone, and Tu-Bao Ho (eds.), Advances
in Knowledge Discovery and Data Mining. Proceedings of the 13th Pacific-Asia Conference: 27–30
April 2009; Bangkok, pp. 507–514, Berlin: Springer 2009.

3. Mauricio A. Hernández and Salvatore S. Stolfo. Real-world data is dirty: data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery, 2(1):9–37, 1998.

4. Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl,
Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd Wiswedel. KNIME: The Konstanz information
miner. In: Christine Preisach, Hans Burkhardt, Lars Schmidt-Thieme, and Reinhold Decker (eds.)
Data Analysis, Machine Learning and Applications, pp. 319–326. Berlin: Springer 2008.

5. Norman L. Johnson, Adrienne W. Kemp, and Samuel Kotz. Univariate Discrete Distributions. 3rd
ed., Hoboken, NJ: Wiley 2005.

9

Appendix

A1. Generic Errors

1. Abbreviate
Randomly replaces one (or all depending on the configuration) token by its first letter
and a dot (meaning its abbreviation). Tokens are identified by splitting the input at the
blank characters.
Example: Michael → M.
Shortcut: abb

2. Blanks To Hyphens
Replaces any occurrence of a blank by hyphens (“-”).
Example: New Haven → New-Haven
Shortcut: bth

3. Delete Blank
Randomly removes one blank from the input if there is any. Returns input otherwise.
Example: New Haven → NewHaven
Shortcut: deb

4. Delete Token
Randomly removes one token from the input if there is more than one token. Tokens are
identified by splitting the input at the blank characters.
Example: New Haven → Haven
Shortcut: det

5. Digit To Dot
Randomly replaces one digit by a dot (“.”) if there is any digit in the input.
Example: 56th street → 5.th street
Shortcut: dtd

6. Drop Last Character
Removes last character from the input.
Example: Michael → Michae
Shortcut: dlc

7. Drop Last Two Characters
Removes the last two characters from the input.
Example: Michael → Micha
Shortcut: dlt

8. Drop Nondigits
Removes all occurrences of nondigits from input.
Example: 56th street → 56
Shortcut: dnd

9. Hyphens To Blanks
Replaces any occurrence of a hyphen “-” by blanks.
Example: Jean-Francois → Jean Francois
Shortcut: htb

10. Insert Blank
Randomly inserts one blank into the input.
Example: Michael → Mi chael
Shortcut: inb

11. Keep First Token
Keeps only the first token of the input. Tokens are identified by splitting the input at
the blank characters.

10

Example: New Haven → New
Shortcut: kft

12. Keep Longest Token
Keeps only the longest token of the input. Tokens are identified by splitting the input at
the blank characters.
Example: New Haven → Haven
Shortcut: klt

13. Replace By Empty String
Replaces the input by an empty string.
Example: Michael →
Shortcut: rbe

14. Resolve Umlauts And Sharp S
Replaces any occurrence of a German umlaut as well as the German sharp S by its ASCII
representations
Example: Sträßer → Straesser
Shortcut: rus

15. Revert Resolved Umlauts And Sharp S
Replaces any occurrence of a German umlaut replacement as well as a “ss” by its umlaut
/ sharp S representations
Example: Straesser → Sträßer
Shortcut: rru

16. Special Characters To Blanks
Replaces any occurrence of a character that isn’t either a digit or a German letter (US
letters + umlauts + sharp S) by blanks.
Example: Lord-Curzon-Street 56/A → Lord Curzon Street 56 A
Shortcut: scb

17. Swap Fields
Swaps the values of 2 columns.
Example: Michael; Smith; Curzon St; New Haven → Curzon St; Smith; Michael; New
Haven
Shortcut: swf

18. Swap Tokens
Swaps two randomly chosen tokens of the input. Tokens are identified by splitting the
input at the blank characters.
Example: Lord Curzon Street → Lord Street Curzon
Shortcut: swt

11

A2. File Based Errors

1. Marriage
For usage with a surname column only. Either prefixes the original surname with an
alternative surname and a hyphen or replaces the original surname. Each operation is
chosen with equal probability 0.5. The alternative surname is randomly chosen from a
given reference table. The operation is applied only if an appropriate column flags the
row as representing a female and another column flags the row as representing a person
of 18 years or older.
Examples: Miller -> Smith-Miller; Miller -> Brown
Shortcut: mar

2. New Value
Replaces the given cell value by a randomly chosen new value from specified columns of
a given reference table.
Shortcut: new

3. OCR
Insert simulated OCR errors based on a replacement frequency map. First the position
of the OCR error within the string is chosen randomly with equal probability. Then
all replacements and their frequencies for the chosen error position are fetched from
the replacement frequency map. The replacement is chosen randomly from the fetched
replacements weighted by the given frequencies. See example below.
Shortcut: ocr

4. Phonetic
Insert simulated phonetic errors based on a regular expression pattern replacement map-
ping. First the position of an error operation within the string is chosen randomly with
equal probability. Then a source pattern that is applicable at the chosen error posi-
tion is randomly chosen either from the internally or externally provided source-pattern-
replacement map. The chosen pattern is replaced randomly by one of the provided re-
placement strings. If no replacement string is provided for the source pattern, then instead
of a replacement the pattern will be removed from the input string.
Shortcut: pho

5. Substitute
Substitutes strings by a substitution value taken from one or more mapping files. If there
are several substitution values, the replacement is randomly chosen.
Shortcut: sub

6. Typo
Insert simulated typographical errors. There are four typographical errors: Insertion,
Deletion, Substitution, and Transposition of a character. The position of an error oper-
ation within the string is determined by a normal distribution with mean corresponding
to the middle character of the string. The logic of this node corresponds to the mecha-
nism used in the Febrl data set generator. If multiple alphabets are provided they will
be concatenated. If there are multiple column transition rules for the same source key,
only the last one is used. If there are multiple row transition rules for the same source
key, only the last one is used.
Shortcut: typ

12

A3. Pattern Bound Errors

A3.1 Date of Birth Errors
1. Alter Day

Alters the day of a given date between 1–5 days up or down (probability for n days:
p = n

1
2). Expects date to be formatted YYYY-MM-DD. If max/min is reached, day

wraps around (31 → 1, 1 → 31) without changing the month or year of the date.
Shortcut: sda

2. Alter Decade
Alters the year of a given date between 1–5 decades up or down (probability for n decades:
p = n

1
2). Expects date to be formatted YYYY-MM-DD. Stops when century boundary

is reached.
Shortcut: sde

3. Alter Month
Alters the month of a given date between 1–5 months up or down (probability for n

months: p = n
1
2). Expects date to be formatted YYYY-MM-DD. If max/min month is

reached, month wraps around (12 → 1, 1 → 12) without changing the year of the date.
Shortcut: smo

4. Alter Year
Alters the year of a given date between 1–5 years up or down (probability for n years:
p = n

1
2). Expects date to be formatted YYYY-MM-DD. Stops when decade boundary is

reached.
Shortcut: sye

5. Drop Century
Removes the century from the year of a given date: Expects date to be formatted THDY-
MM-DD and returns DY-MM-DD.
Shortcut: dce

6. Drop Day
Removes the day from a given date: Expects date to be formatted YYYY-MM-DD and
returns YYYY-MM-.
Shortcut: dda

7. Drop Leading Zero From Day
Removes the leading zero from the day of a given date: Expects date to be formatted
YYYY-MM-0D and returns YYYY-MM-D.
Shortcut: dld

8. Drop Leading Zero From Month
Removes the leading zero from the month of a given date: Expects date to be formatted
YYYY-0M-DD and returns YYYY-M-DD.
Shortcut: dlm

9. Drop Month
Removes the month from a given date: Expects date to be formatted YYYY-MM-DD
and returns YYYY–DD.
Shortcut: dmo

10. Drop Year
Removes the year from a given date: Expects date to be formatted YYYY-MM-DD and
returns - -MM-DD.
Shortcut: dye

11. Drop Year And Decade
Removes the year and decade from the year of a given date: Expects date to be formatted
THDY-MM-DD and returns TH-MM-DD.

13

Shortcut: dyd
12. Reset Day

Sets the day of a given date to 01: Expects date to be formatted YYYY-MM-DD and
returns YYYY-MM-01.
Shortcut: rda

13. Reset Month
Sets the month of a given date to 01: Expects date to be formatted YYYY-MM-DD and
returns YYYY-01-DD.
Shortcut: rmo

14. Reset Year
Sets the single digit of the year of a given date to 5: Expects date to be formatted
YYYY-MM-DD and returns YYY5-MM-DD.
Shortcut: rye

15. Round To Next Decade
Rounds the year of a given date to the next decade: Expects date to be formatted YYYY-
MM-DD.
Shortcut: rnd

16. Swap Day And Month
Swaps the day and the month of a given date. Expects date to be formatted YYYY-MM-
DD and returns YYYY-DD-MM.
Shortcut: sdm

17. Swap Day’s Digits
Swaps the digits of the day of a given date. Expects date to be formatted YYYY-MM-dD
and returns YYYY-MM-Dd.
Shortcut: swd

18. Swap Month’s Digits
Swaps the digits of the month of a given date. Expects date to be formatted YYYY-Mm-
DD and returns YYYY-mM-DD.
Shortcut: swm

19. Swap Year’s First Two Digits
Swaps the first two digits of the year of a given date. Expects date to be formatted
yzYY-MM-DD and returns zyYY-MM-DD.
Shortcut: syf

20. Swap Year’s Last Two Digits
Swaps the last two digits of the year of a given date. Expects date to be formatted
YYyz-MM-DD and returns YYzy-MM-DD.
Shortcut: syl

14

A3.2 German ZIP Code Errors
1. Alter 1st Digit

Alters the 1st digit of the given German ZIP code randomly by n = 1, 2, 3 up or down
(probability for alter n: p = n

1
2). Expects a 5 digit German ZIP code string input.

Shortcut: s1d
2. Alter 2nd Digit

Alters the 2nd digit of the given German ZIP code randomly by n = 1, 2, 3 up or down
(probability for alter n: p = n

1
2). Expects a 5 digit German ZIP code string input.

Shortcut: s2d
3. Alter 3rd Digit

Alters the 3rd digit of the given German ZIP code randomly by n = 1, 2, 3 up or down
(probability for alter n: p = n

1
2). Expects a 5 digit German ZIP code string input.

Shortcut: s3d
4. Alter 4th Digit

Alters the 4th digit of the given German ZIP code randomly by n = 1, 2, 3 up or down
(probability for alter n: p = n

1
2). Expects a 5 digit German ZIP code string input.

Shortcut: s4d
5. Alter 5th Digit

Alters the 5th digit of the given German ZIP code randomly by n = 1, 2, 3 up or down
(probability for alter n: p = n

1
2). Expects a 5 digit German ZIP code string input.

Shortcut: s5d

Publisher

German Record-Linkage Center
Regensburger Str. 104
D-90478 Nuremberg

Template layout

Christine Weidmann

All rights reserved

Reproduction and distribution in any form, also in parts,
requires the permission of the German Record-Linkage Center

	Seiten aus wp-grlc-2012-01
	wp-03-simulator
	Seiten aus wp-grlc-2012-01-2

